Pre-AP Algebra II
Notes Day \# 99

Solving Radical Equations \& Inequalities

SOLVING RADICAL EQUATIONS

REVIEW: Radical Equations include radical expressions. We can solve a radical equation by raising each side of the equation to a power. The steps were shown previously.

Directions: Solve the following equations. Check for extraneous solutions.
Ex. 1:

$$
\begin{aligned}
& \sqrt{x-4}=3 \\
& (\sqrt{x-4})^{2}=(3)^{2} \\
& x-4=9 \\
& +4+4 \\
& x=13
\end{aligned}
$$

CHECK:

$$
\begin{aligned}
& \sqrt{x-4}=3 \\
& \text { Check } x=13 \\
& \sqrt{13-4}=3 \\
& \sqrt{9}=3 \\
& 3=3
\end{aligned}
$$

Ex. 2: $\quad \sqrt[3]{2 x+1}=3$

$$
(\sqrt[3]{2 x+1})^{3}=(3)^{3}
$$

$$
2 x+1=27
$$

$$
-1 \quad-1
$$

$$
\frac{2 x}{2}=\frac{26}{2}
$$

$$
x=13
$$

Ex. 3: $\quad \sqrt[3]{2 x+1}=-3$
$(\sqrt[3]{2 x+1})^{3}=(-3)^{3}$

$2 x+1$	$=-27$
-1	-1
$\frac{2 x}{2}$	$=\frac{-28}{2}$

$$
x=-14
$$

SOLVING RADICAL INEQUALITIES

A radical inequality has a variable in the radicand. To solve radical inequalities, complete the following steps.

Steps for Solving Radical Inequalities

Step 1: If the index of the root is even, identify the values of the variable for the radicand is nonnegative.
Step 2: \quad Solve the inequality algebraically.
Step 3: Test values to check your solution.

$$
\begin{array}{r}
2 x+2 \geq 0 \\
\frac{-2}{} \geq-2 \\
\hline \frac{2 x}{2} \geq \frac{-2}{2} \\
x \geq-1
\end{array}
$$


```
x\geq1
```

Ex. 4:
 (negatives will be imaginary)

$$
(\sqrt{2 x+2})^{2} \geq(4)^{2}
$$

$$
2 x+2 \geq 16
$$

$$
\frac{-2}{\frac{2 x}{2} \geq \frac{14}{2}}
$$

$$
x \geq 7
$$

Ex. 5:
$\sqrt{4 x-4}-2<4$

$$
\sqrt{4 x-4}-2<4
$$

CHECK:

$\left.\begin{array}{|cc}\text { CHECK: } & \sqrt{4 x-4}-2<4 \\ \text { Check } x=0 & \sqrt{4(0)-4}-2<4 \\ \sqrt{0-4}-2<4 \\ \sqrt{-4}-2<4 \quad x \\ \text { imaginary }\end{array}\right]$

