

SOLVING RADICAL EQUATIONS

Radical equations include radical expressions. We can solve a radical equation by raising each side of the equation to a power.

Steps for Solving Radical Equations

Step 1: Isolate the radical on one side of the equation.
Step 2: Raise each side of the equation to a power equal to the index of the radical to eliminate the radical.
Step 3: \quad Solve the resulting polynomial equation. Check your results.
(Steps 1 and 2 may need to be repeated if there are multiple radicals in the equation.)
When solving radical equations, the result may be a number that does not satisfy the original equation. Such a number is called an extraneous solution.

Directions: Solve the following equations. Check for extraneous solutions.

Ex. 1:

$$
\begin{aligned}
& \sqrt{x-1}=3 \\
& (\sqrt{x-1})^{2}=(3)^{2} \\
& x-1=9 \\
& \frac{1}{x=10}
\end{aligned}
$$

Ex. 2:

$$
\begin{aligned}
& \begin{array}{c}
2+\sqrt{3 x-2}
\end{array}=6 \\
&-2-2 \\
& \hline \sqrt{3 x-2}=4 \\
&(\sqrt{3 x-2})^{2}=(4)^{2} \\
& 3 x-2=16 \\
&+2+2 \\
& \hline \frac{3 x}{3}=\frac{18}{3} \\
& x=\frac{18}{3}
\end{aligned}
$$

CHECK:

$$
\begin{aligned}
\sqrt{x-1} & =3 \\
\sqrt{10-1} & =3 \\
\sqrt{9} & =3 \\
3 & =3
\end{aligned}
$$

CHECK:

$2+\sqrt{3 x-2}=6$
$2+\sqrt{3\left(\frac{18}{3}\right)-2}=6$
$2+\sqrt{18-2}=6$
$2+\sqrt{16}=6$
$2+4=6$
$6=6$

Directions: Solve the following equations. Check for extraneous solutions.
Ex. 3:

Ex. 4:

Ex. 5: $\quad \sqrt{x+15}=5+\sqrt{x}$
$(\sqrt{x+15})^{2}=(5+\sqrt{x})^{2}$
CHECK:

$$
\begin{aligned}
& \sqrt{x+15}=5+\sqrt{x} \\
& \text { Check } x=1 \\
& \sqrt{1+15}=5+\sqrt{1} \\
& \sqrt{16}=5+1 \\
& 4=6 x
\end{aligned}
$$

We can apply the methods used to solve square root equations to solving equations with roots of any index. To undo an nth root, raise to the nth power.
Ex. 6:

$4 \sqrt[4]{3 x+6}-12$	$=0$
+12	+12
$\frac{4 \sqrt[4]{3 x+6}}{4}$	$=\frac{12}{4}$
$\sqrt[4]{3 x+6}$	$=3$
$(\sqrt[4]{3 x+6})^{4}$	$=(3)^{4}$
$3 x+6$	$=81$
-6	-6
$\frac{3 x}{3}$	$=\frac{75}{3}$
x	$=25$

CHECK:

$4 \sqrt[4]{3 x+6}=12$
Check $x=25$
$4 \sqrt[4]{3(25)+6}=12$
$4 \sqrt[4]{75+6}=12$
$4 \sqrt[4]{81}=12$
$4(3)=12$
$12=12$

