Pre-AP Algebra II
 Notes Day \# 100
 Rules of Exponents and Radicals

For $a>0, b>0$, and all values of m and n, these following properties are true:

Product Property of Exponents $a^{m} \cdot a^{n}=a^{m+n}$

$$
\text { Ex. 1: } x^{6} \cdot x^{7}=X^{6+7}=X^{13}
$$

Quotient Property of Exponents
$\frac{a^{m}}{a^{n}}=a^{m-n}$

$$
\text { Ex. 2: } \frac{x^{7}}{x}=X^{7-1}=X^{6}
$$

Power of a Power Property $\left(a^{m}\right)^{n}=a^{m n}$

$$
\text { Ex. 3: }\left(x^{6}\right)^{3}=X^{6.3}=X^{18}
$$

Power of a Product Property

$$
(a b)^{m}=a^{m} b^{m}
$$

$$
\text { Ex. 4: } \begin{aligned}
\left(3 x^{3} y\right)^{2} & =\left(3^{2} x^{3.2} y^{1.2}\right) \\
& =9 x^{6} y^{2}
\end{aligned}
$$

Power of a Quotient Property
$\left(\frac{a}{b}\right)^{n}=\frac{a^{n}}{b^{n}}$

Definition of Negative Exponents

$$
\text { Ex. 5: } \begin{aligned}
\left(\frac{3 x^{2}}{y^{3}}\right)^{4} & =\frac{3^{4} x^{24}}{y^{3 \cdot 4}} \\
& =\frac{81 x^{8}}{y^{12}}
\end{aligned}
$$

$$
a^{-n}=\frac{1}{a^{n}} \text { or }\left(\frac{a}{b}\right)^{-n}=\left(\frac{b}{a}\right)^{n}
$$

$$
\text { Ex. 6: } \begin{aligned}
\frac{x^{-3}}{1} & =\frac{1}{x^{3}} \\
& \frac{1}{y^{-2}}=y^{2}
\end{aligned}
$$

Zero Exponents

$$
a^{0}=1
$$

Power Property of Equality
If $a=b$, then $a^{n}=b^{n}$
Common Base Property of Equality
If $\boldsymbol{a}^{\boldsymbol{n}}=\boldsymbol{a}^{\boldsymbol{m}}$, then $\boldsymbol{n}=\boldsymbol{m}$

RELATIONSHIP BETWEEN RADICALS AND EXPONENTS

If \boldsymbol{m} and \boldsymbol{n} are positive integers, and $\sqrt[n]{a}$ is a real number, then

$$
\begin{gathered}
a^{\frac{1}{n}}=\sqrt[n]{a} \\
\text { and } a^{\frac{m}{n}}=\sqrt[n]{a^{m}} \text { or } a^{\frac{m}{n}}=(\sqrt[n]{a})^{m}
\end{gathered}
$$

Directions: Write in radical form.
Ex. 7: $x^{\frac{1}{2}}=\sqrt{X}$
Ex. 8: $x^{\frac{3}{5}}=\sqrt[5]{x^{3}}$

Directions: Write in exponential form.
Ex. 9: $\sqrt[3]{x}=X^{\frac{1}{3}}$
Ex. 10: $\sqrt[5]{8 y^{2}}$

$$
\left(8 y^{2}\right)^{\frac{1}{5}} \text { or } 8^{\frac{1}{5}} y^{\frac{2}{5}}
$$

Directions: Evaluate the following expressions.
Ex. 11: $27^{\overline{3}}=\sqrt[3]{27}$
Ex. 12: $\frac{25^{-\frac{1}{2}}}{1}=\frac{1}{25^{\frac{1}{2}}}$

$$
=3
$$

$$
=\frac{1}{\sqrt{25}}
$$

Ex. 13: $\begin{aligned} &(-32)^{\frac{3}{5}}=\sqrt[5]{(-32)^{3}} \rightarrow \rightarrow \text { Can apply either the } \\ & \text { fifth root or third } \\ & \text { power }\end{aligned}$
$=\frac{1}{5}$
$=(-2)^{3}$
$=-8$

Directions: Simplify:
Ex. 14: $x^{\frac{2}{3}} \cdot x^{\frac{4}{9}}=X^{\frac{2}{3}+\frac{4}{9}}$
Ex. 15: $\left(\frac{x^{-\frac{1}{4}}}{y^{-\frac{3}{4}}}\right)^{12}=\left(\frac{y^{\frac{3}{4}}}{x^{\frac{1}{4}}}\right)^{12}$

$$
\begin{aligned}
& =x^{\frac{6}{9}+\frac{4}{9}} \\
& =x^{\frac{10}{9}}
\end{aligned}
$$

$$
=\frac{y^{\frac{36}{4}}}{x^{\frac{12}{4}}}
$$

$$
=\frac{y^{9}}{x^{3}}
$$

Simplifying Radicals

The properties we have used to simplify radical expressions involving square roots also hold true for expressions involving \boldsymbol{n} th roots.

Product Property of Radicals

For any real numbers \boldsymbol{a} and \boldsymbol{b} and any integer $n>1, \sqrt[n]{a b}=\sqrt[n]{a} \cdot \sqrt[n]{b}$, if \boldsymbol{n} is even and \boldsymbol{a} and \boldsymbol{b} are both nonnegative or if \boldsymbol{n} is odd.

$$
\sqrt{2} \cdot \sqrt{8}=\sqrt{16} \text { or } 4, \text { and } \sqrt[3]{3} \cdot \sqrt[3]{9}=\sqrt[3]{27} \text { or } 3
$$

In order for a radical to be in simplest form, the radicand must contain no factors that are \boldsymbol{n} th powers of an integer or polynomial.

Directions: Simplify.
Ex. 16:

$$
\begin{aligned}
\sqrt{81 x^{6} z^{14}} & =(\sqrt{81})\left(\sqrt{x^{6}}\right)\left(\sqrt{z^{14}}\right) \\
& \left.=9 \mid x^{3} z^{7}\right)
\end{aligned}
$$

Ex. 17:

$$
\begin{aligned}
\sqrt[3]{27 y^{12} z^{7}} & =(\sqrt[3]{27})\left(\sqrt[3]{y^{12}}\right)\left(\sqrt[3]{z^{7}}\right) \\
& =3 y^{4} z^{2} \sqrt[3]{z^{1}}
\end{aligned}
$$

even-even-odd rule: If both the exponent and rout are even and the answer is an odd exponent, then absolute value bors are placed around the odd exponent

Ex. 18: $\quad \sqrt[4]{81 x^{5} y^{12} z^{10}}$

$$
=3\left|x y^{3} z^{5}\right| \sqrt[4]{x}
$$

