Pre-AP Algebra II Notes Day # 100 Rules of Exponents and Radicals

For a > 0, b > 0, and all values of *m* and *n*, these following properties are true:

Product Property of Exponents $a^m \cdot a^n = a^{m+n}$

Quotient Property of Exponents

$$\frac{a^m}{a^n}=a^{m-n}$$

Power of a Power Property $(a^m)^n = a^{mn}$

Power of a Product Property $(ab)^m = a^m b^m$

Ex. 1:
$$x^{6} \cdot x^{7} = \chi^{6+7} = \chi^{13}$$

Ex. 2: $\frac{x^{7}}{x} = \chi^{7-1} = \chi^{6}$

Ex. 3:
$$(x^6)^3 = \chi^{6.3} = \chi^{18}$$

Ex. 4:
$$(3x^{3}y)^{2} = (3^{2}\chi^{3\cdot 2}y^{1\cdot 2})$$

= $[q\chi^{6}y^{2}]$

Ex. 5:
$$\left(\frac{3x^2}{y^3}\right)^4 = \frac{3^4 \chi^{24}}{\gamma^{3.4}}$$

$$= \frac{8|\chi^8}{\frac{\gamma^{12}}{\gamma^{12}}}$$
Ex. 6: $\frac{x^{-3}}{1} = \frac{1}{\chi^3}$
 $\frac{1}{\gamma^{-2}} = \frac{\gamma^2}{1}$

Zero Exponents $a^0 = 1$

Power Property of Equality If a = b, then $a^n = b^n$

Common Base Property of Equality If $a^n = a^m$, then n = m

Power of a Quotient Property

 $\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$

Definition of Negative Exponents

$$a^{-n} = \frac{1}{a^n} \text{ or } \left(\frac{a}{b}\right)^{-n} = \left(\frac{b}{a}\right)^n$$

Parts of a Radical

RELATIONSHIP BETWEEN RADICALS AND EXPONENTS

If *m* and *n* are positive integers, and $\sqrt[n]{a}$ is a real number, then

$$a^{\frac{1}{n}} = \sqrt[n]{a}$$

and $a^{\frac{m}{n}} = \sqrt[n]{a^{m}}$ or $a^{\frac{m}{n}} = \left(\sqrt[n]{a}\right)^{m}$

Directions:	Write in radical form.
Ex. 7: $x^{\frac{1}{2}}$	= JX

Ex. 8:
$$x^{\frac{3}{5}} = 5\sqrt{\chi^3}$$

Directions:	Wr	rite in exponential form.
Ex. 9: $\sqrt[3]{x}$	0	X ¹ 3

Ex. 10:
$$\sqrt[5]{8y^2}$$

$$(8y^2)^{\frac{1}{5}}$$
 or $8^{\frac{1}{5}}y^{\frac{2}{5}}$

Ex. 12: $\frac{25^{-\frac{1}{2}}}{l} = \frac{l}{25^{\frac{1}{2}}}$

= $\frac{1}{\sqrt{25}}$

=

-15

Directions: Evaluate the following expressions. Ex. 11: $27^{\frac{1}{3}} = \frac{3}{127}$

 $= (-2)^{3}$ = -8

Ex. 14:
$$x^{\frac{2}{3}} \cdot x^{\frac{4}{9}} = \chi^{\frac{2}{3} + \frac{4}{9}}$$

= $\chi^{\frac{6}{9} + \frac{4}{9}}$
= $\chi^{\frac{10}{9}}$

Ex. 15:
$$\left(\frac{x^{-\frac{1}{4}}}{y^{-\frac{3}{4}}}\right)^{12} = \left(\frac{y^{\frac{3}{4}}}{x^{\frac{1}{4}}}\right)^{12}$$
$$= \frac{y^{\frac{36}{4}}}{x^{\frac{1}{4}}}$$
$$= \frac{y^{\frac{36}{4}}}{x^{\frac{1}{4}}}$$

Simplifying Radicals

The properties we have used to simplify radical expressions involving square roots also hold true for expressions involving *n*th roots.

Product Property of Radicals

For any real numbers *a* and *b* and any integer n > 1, $\sqrt[n]{ab} = \sqrt[n]{a} \cdot \sqrt[n]{b}$, if *n* is even and *a* and *b* are both nonnegative or if *n* is odd.

$$\sqrt{2} \cdot \sqrt{8} = \sqrt{16}$$
 or 4, and $\sqrt[3]{3} \cdot \sqrt[3]{9} = \sqrt[3]{27}$ or 3

In order for a radical to be in simplest form, the radicand must contain no factors that are *n*th powers of an integer or polynomial.

Directions: Simplify.
Ex. 16:
$$\sqrt{81x^6z^{14}} = (\sqrt{81})(\sqrt{x^6})(\sqrt{z^{14}})$$
 Ex. 17: $\sqrt[3]{27y^{12}z^7} = (\sqrt[3]{27})(\sqrt[3]{y^7})(\sqrt[3]{27})^{12}z^7)$
 $= [q|x^3z^7]$
 $= [3y^4z^2\sqrt{3z^7}]$
 $= [3y^4z^2\sqrt{3z^7}]$
 $= [3y^4z^2\sqrt{3z^7}]$
Hen absolute value bits are placed around the odd exponent
 $= rule does not apply to$

La rule does not apply to odd roots

Ex. 18:
$$\sqrt[4]{81x^5y^{12}z^{10}}$$

 $\frac{3}{3} \times y^{3} z^{3} | \sqrt[4]{X}$