Pre-AP Algebra II
 Notes Day \# 85
 Compositions of Functions

Composition of functions: A function operation that uses the output of one function as the input for a second function. Stated another way, a composition of functions uses one function as the input for
 a different function.

Suppose f and g are functions. Then the composite functions, $f \circ g$, can be described by the equation $(f \circ g)(x)=f(g(x))$.

open dot is a composition of functions, not multiplication

Directions: For examples 1-4, let $f(x)=-x^{2}+4$ and $g(x)=4 x+1$.

Directions: For examples 5 and 6, let $f(x)=x+2$ and $g(x)=x^{2}+1$.

Ex. 5: $f(g(x))$

$$
\text { Ex. 6: } g(f(x))
$$

$$
f(x)=x+2
$$

$$
f(g(x))=\left(x^{2}+1\right)+2
$$

$$
f(g(x))=x^{2}+3
$$

Is $f(g(x))$ the same as $g(f(x))$? No
Directions: For example 7, find the composition of $f(x)=4-2 x$ with its inverse.
Ex. 7:
A. Find the inverse of $f(x)=4-2 x$

$$
\begin{aligned}
& y=4-2 x \\
& x=4-2 y \\
& -4-4 \\
& x-4=-2 y
\end{aligned} \quad, \begin{aligned}
& \frac{x-4}{-2}=\frac{-2 y}{-2} \\
& -\frac{1}{2} x+2=y \\
& f^{-1}(x)=-\frac{1}{2} x+2
\end{aligned}
$$

B. Find $f\left(f^{-1}(x)\right)$

$$
\begin{aligned}
f(x) & =4-2 x \\
f\left(f^{-1}(x)\right) & =4-2\left(-\frac{1}{2} x+2\right)
\end{aligned}
$$

$$
f\left(f^{-1}(x)\right)=4+x-4
$$

$$
f\left(f^{-1}(x)\right)=x
$$

C. Find $f^{-1}(f(x))$

$$
\begin{aligned}
& f^{-1}(x)=-\frac{1}{2} x+2 \\
& f^{-1}(f(x))=-\frac{1}{2}(4-2 x)+2 \\
& f\left(f^{-1}(x)\right)=-2+x+2 \\
& f\left(f^{-1}(x)\right)=x
\end{aligned}
$$

When you take the composition of a function and its inverse, you get \qquad .
Are both these relations functions? yes
Three ways to prove that functions are inverses:

1. The values of the domain and range are switched.
2. The functions are reflections about the line $y=x$.
3. The composition of functions yields x.
