Pre-AP Algebra II Notes Day # 50-51 Matrix Basics

A <u>MQ+rix</u> is a rectangular array of numbers enclosed by brackets. $\begin{bmatrix} 2 & 5 \\ 1 & 0 \end{bmatrix}$

The numbers in a matrix are called the <u>elements</u> of the matrix.

 $\begin{bmatrix} 2 & 5 \\ 1 & 0 \end{bmatrix}$ 2, 5, 1, and 0 are the elements of this matrix

The number of <u>rows</u> (horizontal) and the number of <u>columns</u> (vertical) determine the $\underline{dimensions}$ of the matrix.

When giving the dimensions of a matrix, you <u>always</u> write the number of rows first, then the 3 (olumns) $2 \text{ Rous} \begin{bmatrix} 5 & 7 & -9 \\ 9 & 5 & -3 \end{bmatrix}$ This matrix is a 2 row by 3 column matrix, a 2 X 3

In a square matrix, the number of rows and the number of columns are equal.

 $\begin{bmatrix} 4 & 6 \\ -1 & 7 \end{bmatrix} \qquad a \ 2 \ X \ 2 \ matrix$

Capital letters are used to name matrices.

$$A = \begin{bmatrix} 1 & 9 & 3 \\ 4 & 7 & 8 \end{bmatrix}$$

If all the elements of a matrix are zeros, the matrix is called a Zero Matrix

 $\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$

<u>Two matrices are equal if and only if they have the same dimensions and the elements in all</u> <u>corresponding positions are equal.</u>

$$\begin{bmatrix} 2 & 3 \\ 8 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 3 \\ 8 & 1 \end{bmatrix}$$

<u>Matrices must be the same size to add or subtract them.</u> <u>Simply add or subtract the corresponding elements.</u>

Ex. 1:
$$\begin{bmatrix} 1 & -2 & 0 \\ 3 & -5 & 7 \end{bmatrix} + \begin{bmatrix} 3 & 9 & -3 \\ -9 & 6 & 12 \end{bmatrix} = \begin{bmatrix} 4 & 7 & -3 \\ -6 & | & |9 \end{bmatrix}$$

Ex. 2:
$$\begin{bmatrix} 3 & 2 & 4 \\ -1 & 4 & 0 \end{bmatrix} - \begin{bmatrix} 1 & 4 & 3 \\ -2 & 2 & 4 \end{bmatrix} = \begin{bmatrix} 2 & -2 & 1 \\ | & 2 & -4 \end{bmatrix}$$

Directions: Solve for matrix X.

Ex. 3:

$$X - \begin{cases} 1 & 1 \\ 3 & 2 \end{cases} = \begin{bmatrix} 0 & 1 \\ 8 & 9 \end{bmatrix}$$

$$\frac{+ (k) + (k)}{\chi = (k)} + \begin{bmatrix} 1 & 1 \\ 3 & 2 \end{bmatrix} + \begin{bmatrix} 1 & 1 \\ 3 & 2 \end{bmatrix} + \begin{bmatrix} 1 & 1 \\ 3 & 2 \end{bmatrix}$$

$$X = \begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix}$$

Directions: Solve for x and y.

Ex. 4:	2x-5	4	_25	4
	3	3y+12	- 3	<u>y+18</u>

2X-5=25 +5 + 5	3y+12 = y+18 -y -y
$\frac{1}{2\chi} = \frac{30}{2}$	2y + 12 = 18 -12 -12
χ =15	
	y=3

Ex. 5:

Ex.

$$\begin{bmatrix} 3 & 4 \\ -1 & 2 \end{bmatrix} - \begin{bmatrix} 2 & -1 \\ -1 & 0 \end{bmatrix} = \begin{bmatrix} x & 5 \\ 0 & y \end{bmatrix}$$
$$\begin{bmatrix} 1 & 5 \\ 0 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 5 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix}$$

You can also multiply a matrix by a real number

Ex. 6:
$$3\begin{bmatrix} 3 & 5\\ 2 & 8 \end{bmatrix} = \begin{bmatrix} 9 & 16\\ 6 & 24 \end{bmatrix}$$

3 is called a scalar.

Directions: Solve for matrix X.

7:
$$4X + 2\begin{bmatrix} 3 & 4 \\ -2 & 1 \end{bmatrix} = \begin{bmatrix} 10 & 0 \\ 4 & 2 \end{bmatrix}$$
$$4\chi + \begin{bmatrix} 6 & 8 \\ -4 & 2 \end{bmatrix} = \begin{bmatrix} 10 & 0 \\ 4 & 2 \end{bmatrix}$$
$$-\begin{bmatrix} 6 & 8 \\ -4 & 2 \end{bmatrix} - \begin{bmatrix} 6 & 9 \\ -4 & 2 \end{bmatrix}$$
$$\frac{1}{4} \begin{bmatrix} 4\chi = \begin{bmatrix} 4 & -8 \\ 8 & 0 \end{bmatrix} \end{bmatrix}$$
$$\chi = \begin{bmatrix} 1 & -2 \\ 2 & 0 \end{bmatrix}$$

To multiply matrices, the number of columns in the first matrix has to equal the number of rows in

$$\begin{bmatrix} -3 & 3 \\ 5 & 0 \end{bmatrix} \begin{bmatrix} -1 & 0 \\ 3 & -4 \end{bmatrix} = \begin{bmatrix} 12 & -12 \\ -5 & 0 \end{bmatrix}$$
$$\begin{bmatrix} -1 & 0 \\ 3 & -4 \end{bmatrix} \begin{bmatrix} -3 & 3 \\ 5 & 0 \end{bmatrix} = \begin{bmatrix} 3 & -3 \\ -24 & 9 \end{bmatrix}$$

Ex. 9:

The two matrices in examples 8 and 9 are the same but in a different order. Notice we have different products for the multiplication. <u>Matrix multiplication is not commutative.</u> The order in which matrices are multiplied matters.

Ex. 10: $\begin{bmatrix} 2 & -1 & 4 \\ 3 & 0 & 2 \end{bmatrix} \begin{bmatrix} 1 & -2 \\ 2 & 4 \\ -1 & 6 \end{bmatrix} = \begin{bmatrix} -4 & |6 \\ | & 6 \end{bmatrix}$

Ex. 11:
$$\begin{bmatrix} 0 & 2 & -1 \\ 4 & 1 & 0 \\ 0 & -1 & 2 \end{bmatrix} \begin{bmatrix} 4 & 3 & 0 \\ -1 & 0 & 2 \\ 1 & 0 & -2 \end{bmatrix} = \begin{bmatrix} -3 & 0 & 6 \\ 15 & 12 & 2 \\ 3 & 0 & -6 \end{bmatrix}$$

MATRIX DETERMINANTS AND INVERSES

The Determinant
The determinant of
$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
 is $\begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc$

Directions: Find the value of the following determinant.

Ex. 12: $\begin{vmatrix} -3 \\ 2 \\ -5 \end{vmatrix} = \sqrt{5-8} = 7$

Ex. 13: $\begin{vmatrix} 2 & 4 & 1 \\ 1 & 6 & 3 \\ -2 & 3 & 5 \end{vmatrix} = \end{vmatrix}$

If the determinant is equal to 0, then there is no inverse. Determinants help us find the inverses!

Recall, in the real number system, 1 is the multiplication identity since $1 \cdot a = a$.

The multiplicative inverse of a is $\frac{1}{a}$ since $\frac{1}{a} \cdot a = 1$, the identity. For matrices, the multiplicative identity is $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ for a 2x2 matrix since $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ The identity matrix for a 3x3 is: $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

If you multiply a matrix and the inverse of that matrix, you will have the identify matrix. To show that two matrices are inverses of each other, we must show that $A^{-1} \cdot A = I$

Directions: Determine if the following matrices are inverses. <u>If you do not get the identity matrix,</u> then they are not inverses.

Ex. 14:
$$\begin{bmatrix} 2 & 3 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 2 & -3 \\ -1 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \qquad \text{Inverse S}$$

Ex. 15:
$$\begin{bmatrix} 7 & 2 & -9 \\ 3 & 1 & -4 \\ -2 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & -4 & 2 \\ -2 & 5 & 2 \\ 1 & -2 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -3 & 6 & -2 \end{bmatrix} \qquad \text{Not} \quad \text{inverse S}$$

The inverse of the 2x2 matrix
$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \text{ is: } A^{-1} = \frac{1}{\det A} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

Directions: Find the inverse of each of the following matrices.

Ex. 16: $\begin{bmatrix} 5 & 3 \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} -1 & 3 \\ 2 & -5 \end{bmatrix}$

Ex. 17:
$$\begin{bmatrix} 4 & 6 \\ 2 & 3 \end{bmatrix}$$
 No inverse

Ex. 18: $\begin{bmatrix} 12 & -9 & 13 \\ 0 & 0 & 8 \\ -9 & 2 & 1 \end{bmatrix} = \begin{bmatrix} -\frac{2}{57} & \frac{35}{456} & -\frac{3}{14} \\ -\frac{3}{14} & \frac{43}{152} & -\frac{4}{14} \\ 0 & \frac{1}{57} & 0 \end{bmatrix}$