Pre-AP Algebra II
 Notes Day \# \square 50-51
 Matrix Basics

a matrix is a rectangular array of numbers enclosed by brackets.

$$
\left[\begin{array}{ll}
2 & 5 \\
1 & 0
\end{array}\right]
$$

The numbers in a matrix are called the elements of the matrix.

$$
\left[\begin{array}{ll}
2 & 5 \\
1 & 0
\end{array}\right] \quad 2,5,1 \text {, and } 0 \text { are the elements of this matrix }
$$

The number of rows (horizontal) and the number of columns (vertical) determine the
\qquad of the matrix.

When giving the dimensions of a matrix, you always write the number of rows first, then the

columns (rows X columns).

This matrix is a 2 row by 3 column matrix, a 2×3

In a square matrix, the number of rows and the number of columns are equal.

$$
\left[\begin{array}{cc}
4 & 6 \\
-1 & 7
\end{array}\right] \quad \text { a } 2 \times 2 \text { matrix }
$$

Capital letters are used to name matrices.

$$
A=\left[\begin{array}{lll}
1 & 9 & 3 \\
4 & 7 & 8
\end{array}\right]
$$

If all the elements of a matrix are zeros, the matrix is called a \qquad
\qquad
\qquad .

$$
\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Two matrices are equal if and only if they have the same dimensions and the elements in all corresponding positions are equal.

$$
\left[\begin{array}{ll}
(2) & 3 \\
(8) & 1
\end{array}\right]=\left[\begin{array}{ll}
2 & 3 \\
8 & 1
\end{array}\right]
$$

Ex. 1:

$$
\left[\begin{array}{ccc}
11 & -2 & (1) \\
3 & -5 & 7
\end{array}\right]+\left[\begin{array}{lll}
(3) & (9) & -3 \\
-9 & 6 & 12
\end{array}\right]=\left[\begin{array}{ccc}
4 & 7 & -3 \\
-6 & 1 & 19
\end{array}\right]
$$

$$
\left[\begin{array}{lll}
3 & 2 & 4 \\
-1 & 4 & 0
\end{array}\right]-\left[\begin{array}{lll}
1 & 4 & 3 \\
-2 & 2 & 4
\end{array}\right]=\left[\begin{array}{ccc}
2 & -2 & 1 \\
1 & 2 & -4
\end{array}\right]
$$

Directions: Solve for matrix X.
Ex. 3:
$=(B)$
$+(A)$
$x=B+(A)$

$$
\begin{aligned}
X & -\left[\begin{array}{ll}
1 & 1 \\
3 & 2
\end{array}\right]=\left[\begin{array}{ll}
0 & 1 \\
8 & 9
\end{array}\right] \\
& +\left[\begin{array}{ll}
1 & 1 \\
3 & 2
\end{array}\right]+\left[\begin{array}{ll}
1 & 1 \\
3 & 2
\end{array}\right]
\end{aligned}
$$

$$
x=\left[\begin{array}{cc}
1 & 2 \\
11 & 11
\end{array}\right]
$$

Directions: Solve for x and y.
Ex. 4:

$$
\left.\left.\begin{array}{l}
\text { Solve for } x \text { and } y . \\
{\left[\begin{array}{ccc}
2 x-5 & 4 \\
3 & 3 y+12
\end{array}\right]=\left[\begin{array}{cc}
25 & 4 \\
3 & 4+18
\end{array}\right]}
\end{array} \begin{array}{r}
2 x-5=25 \\
+5+5
\end{array} \begin{array}{c}
\frac{3 y+12=y+18}{2 x=\frac{30}{2}}
\end{array} \begin{array}{c}
\frac{-y}{2 y+12=18}-12 \\
\hline
\end{array}\right] \begin{array}{l}
\frac{2 y}{2}=\frac{6}{2}
\end{array}\right]
$$

$$
\text { Ex. 5: } \quad\left[\begin{array}{cc}
3 & 4 \\
-1 & 2
\end{array}\right]-\left[\begin{array}{cc}
2 & -1 \\
-1 & 0
\end{array}\right]=\left[\begin{array}{cc}
x & 5 \\
0 & y
\end{array}\right]
$$

$$
\left[\begin{array}{ll}
(1) & 5 \\
0 & (2)
\end{array}\right]=\left[\begin{array}{ll}
x & 5 \\
0 & (1)
\end{array}\right]\left[\begin{array}{l}
x=1 \\
y=2
\end{array}\right.
$$

You can also multiply a matrix by a real number
Ex. 6: $\quad 3\left[\begin{array}{ll}3 & 5 \\ 2 & 8\end{array}\right]=\left[\begin{array}{cc}9 & 15 \\ 6 & 24\end{array}\right]$
3 is called a scalar.

Directions: Solve for matrix X.
Ex. 7: $\quad 4 X+\frac{(}{2}\left[\begin{array}{cc}3 & 4 \\ -2 & 1\end{array}\right]=\left[\begin{array}{cc}10 & 0 \\ 4 & 2\end{array}\right]$

$$
\begin{aligned}
4 X+\left[\begin{array}{cc}
6 & 8 \\
-4 & 2
\end{array}\right] & =\left[\begin{array}{cc}
10 & 0 \\
4 & 2
\end{array}\right] \\
& -\left[\begin{array}{cc}
6 & 8 \\
-4 & 2
\end{array}\right]-\left[\begin{array}{cc}
6 & 8 \\
-4 & 2
\end{array}\right]
\end{aligned}
$$

$\frac{1}{4}\left[4 X=\left[\begin{array}{cc}4 & -8 \\ 8 & 0\end{array}\right]\right]$

$$
X=\left[\begin{array}{ll}
1 & -2 \\
2 & 0
\end{array}\right]
$$

To multiply matrices, the number of columns in the first matrix has to equal the number of rows in
Ex. 8: $\quad\left[\begin{array}{cc}-3 & 3 \\ 5 & 0\end{array}\right]\left[\begin{array}{cc}(B) \\ -1 & 0 \\ 3 & -4\end{array}\right]=\left[\begin{array}{cc}\text { the seco } \\ 12 & -12 \\ -5 & 0\end{array}\right]$
Ex. 9: $\quad\left[\begin{array}{cc}-1 & 0 \\ 3 & -4\end{array}\right]\left[\begin{array}{cc}-3 & 3 \\ 5 & 0\end{array}\right]=\left[\begin{array}{cc}3 & -3 \\ -29 & 9\end{array}\right]$

The two matrices in examples 8 and 9 are the same but in a different order.
Notice we have different products for the multiplication.
Matrix multiplication is not commutative.
The order in which matrices are multiplied matters.
Ex. 10: $\quad\left[\begin{array}{lll}2 & -1 & 4 \\ 3 & 0 & 2\end{array}\right]\left[\begin{array}{cc}1 & -2 \\ 2 & 4 \\ -1 & 6\end{array}\right]=\left[\begin{array}{cc}-4 & 16 \\ 1 & 6\end{array}\right]$

Ex. 11: $\quad\left[\begin{array}{ccc}0 & 2 & -1 \\ 4 & 1 & 0 \\ 0 & -1 & 2\end{array}\right]\left[\begin{array}{ccc}4 & 3 & 0 \\ -1 & 0 & 2 \\ 1 & 0 & -2\end{array}\right]=\left[\begin{array}{ccc}-3 & 0 & 6 \\ 15 & 12 & 2 \\ 3 & 0 & -6\end{array}\right]$

MATRIX DETERMINANTS AND INVERSES

The Determinant
The determinant of $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ is $\left|\begin{array}{ll}a & b \\ c & d\end{array}\right|=a d-b c$
Directions: Find the value of the following determinant.
Ex. 12: $\quad\left|-\frac{3}{2}-\frac{4}{4}\right|=15-8=\square$

Ex. 13: $\quad\left|\begin{array}{ccc}2 & 4 & 1 \\ 1 & 6 & 3 \\ -2 & 3 & 5\end{array}\right|=\quad 13$

If the determinant is equal to 0 , then there is no inverse. Determinants help us find the inverses!

Recall, in the real number system, $\mathbf{1}$ is the multiplication identity since $1 \cdot a=a$.
The multiplicative inverse of a is $\frac{\mathbf{1}}{a}$ since $\frac{1}{a} \bullet a=1$, the identity.
For matrices, the multiplicative identity is $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ for a 2×2 matrix since

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

The identity matrix for a 3×3 is: $\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
If you multiply a matrix and the inverse of that matrix, you will have the identify matrix.
To show that two matrices are inverses of each other, we must show that

$$
A^{-1} \cdot A=I
$$

Directions: Determine if the following matrices are inverses. If you do not get the identity matrix, then they are not inverses.

Ex. 14:
$\left[\begin{array}{ll}2 & 3 \\ 1 & 2\end{array}\right]\left[\begin{array}{cc}2 & -3 \\ -1 & 2\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ Inverses

Ex. 15: $\left[\begin{array}{ccc}7 & 2 & -9 \\ 3 & 1 & -4 \\ -2 & 0 & 1\end{array}\right]\left[\begin{array}{ccc}2 & -4 & 2 \\ -2 & 5 & 2 \\ 1 & -2 & 2\end{array}\right]=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ -3 & 6 & -2\end{array}\right] \quad$ Not inverses
The inverse of the 2×2 matrix $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ is: $A^{-1}=\frac{1}{\operatorname{det} A}\left[\begin{array}{cc}d & -b \\ -c & a\end{array}\right]$
Directions: Find the inverse of each of the following matrices.
Ex. 16: $\left[\begin{array}{ll}5 & 3 \\ 2 & 1\end{array}\right]=\left[\begin{array}{cc}-1 & 3 \\ 2 & -5\end{array}\right]$

Ex. 17: $\quad\left[\begin{array}{ll}4 & 6 \\ 2 & 3\end{array}\right] \quad$ No inverse

Ex. 18: $\quad\left[\begin{array}{ccc}12 & -9 & 13 \\ 0 & 0 & 8 \\ -9 & 2 & 1\end{array}\right]=\left[\begin{array}{ccc}-\frac{2}{57} & \frac{35}{456} & -\frac{3}{19} \\ -\frac{3}{19} & \frac{43}{152} & -\frac{4}{19} \\ 0 & \frac{1}{8} & 0\end{array}\right]$

