Pre-AP Algebra II Notes Day #44 Solving Linear Systems of Equations and Inequalities by Graphing

A set of linear equations in the same two variables is called a system of linear equations, or a linear

<u>system</u>.

Remember a linear equation is an equation whose graph is a line.

There are four methods that can be used to solve a system of linear equations: <u>graphing</u>, <u>substitution</u>, <u>elimination</u>, and <u>matrix inverse</u>.

The solution set for a system is the set of ordered pairs that satisfy <u>both</u> equations. When solving a system of equations, there are three possible types of answers: <u>one solution</u> (the two equations are lines that intersect at one point which is written as an ordered pair), <u>no solution</u> (the two equations are lines that are parallel and have no point of intersection), or <u>infinitely many solutions</u> (the two equations are actually the same line just written in a different form).

Graphs of Equations	Number of Solutions	
intersecting lines	one	
same line	infinitely many	
parallel lines	no solution	

Directions: Use the given ordered pair to determine if it is a solution to the system of linear equations.

Ex. 1:
$$(2, 4)$$
 $(2x + y = 8)$
Ex. 1: $(2, 4)$ $(2x + y = 8)$
 $(2x + y = 8)$
 $(2x - 2y = -6)$
 $2 - 2(4) = -6$
 $2 - 2(4) = -6$
 $2 - 8 = -6$
 $-6 = -6$
 $(2 - 4)$
 $(2 - 4)$ $(3 - 6)$
 $(2 - 8)$
 $(2 - 8) = -6$
 $(2 - 8) = -6$
 $(2 - 8) = -6$
 $(2 - 8) = -6$
 $(2 - 8) = -6$
 $(2 - 8) = -6$
 $(2 - 8) = -6$
 $(2 - 8) = -6$
 $(2 - 8) = -6$
 $(2 - 8) = -6$
 $(2 - 8) = -6$
 $(2 - 8) = -6$
 $(2 - 8) = -6$
 $(2 - 8) = -6$
 $(2 - 8) = -6$
 $(2 - 8) = -6$
 $(2 - 8) = -6$
 $(2 - 8) = -6$
 $(2 - 8) = -6$
 $(2 - 12) = -24$
 $(2 - 12) = -24$
 $(2 - 12) = -24$
 $(2 - 12) = -24$
 $(2 - 12) = -24$
 $(2 - 12) = -24$
 $(2 - 12) = -24$
 $(2 - 12) = -24$
 $(2 - 12) = -24$
 $(2 - 12) = -24$
 $(2 - 12) = -24$
 $(2 - 12) = -24$
 $(2 - 12) = -24$
 $(2 - 12) = -24$
 $(2 - 12) = -24$
 $(2 - 12) = -24$
 $(2 - 12) = -24$
 $(2 - 12) = -24$
 $(2 - 12) = -24$
 $(2 - 12) = -24$
 $(2 - 12) = -24$
 $(2 - 12) = -24$
 $(2 - 12) = -24$
 $(2 - 12) = -24$
 $(2 - 12) = -24$
 $(2 - 12) = -24$
 $(2 - 12) = -24$
 $(2 - 12) = -24$
 $(2 - 12) = -24$
 $(2 - 12) = -24$
 $(2 - 12) = -24$
 $(2 - 12) = -24$
 $(2 - 12) = -24$
 $(2 - 12) = -24$
 $(2 - 12) = -24$
 $(2 - 12) = -24$
 $(2 - 12) = -24$
 $(2 - 12) = -24$
 $(2 - 12) = -24$
 $(2 - 12) = -24$
 $(2 - 12) = -24$
 $(2 - 12) = -24$
 $(2 - 12) = -24$
 $(2 - 12) = -24$
 $(2 - 12) = -24$
 $(2 - 12) = -24$
 $(2 - 12) = -24$
 $(2 - 12) = -24$
 $(2 - 12) = -24$
 $(2 - 12) = -24$
 $(2 - 12) = -24$
 $(2 - 12) = -24$
 $(2 - 12) = -24$
 $(2 - 12) = -24$
 $(2 - 12) = -24$
 $(2 - 12) = -24$
 $(2 - 12) = -24$
 $(2 - 12) = -24$
 $(2 - 12) = -24$
 $(2 - 12) = -24$
 $(2 - 12) = -24$
 $(2 - 12) = -24$
 $(2 - 12) = -24$
 $(2 - 12) = -24$
 $(2 - 12) = -24$
 $(2 - 12) = -24$
 $(2 - 12) = -24$
 $(2 - 12) = -24$
 $(2 - 12) = -24$
 $(2 - 12) = -24$
 $(2 - 12) = -24$
 $(2 - 12) = -24$
 $(2 - 12) = -24$
 $(2 - 12) = -24$
 $(2 - 12) = -24$
 $(2 - 12) = -24$
 $(2 - 12) = -24$
 $(2 - 12) = -24$
 $(2 - 12) = -24$
 $(2 - 12) = -24$
 $(2 - 12) = -24$
 $(2 - 12) = -24$
 $(2 - 12) = -24$
 $(2 - 12) = -24$
 $(2 - 12) = -24$
 $(2 - 12) =$

Does the ordered pair have to work for both equations for it to be a solution?

SOLVING SYSTEMS OF EQUATIONS BY GRAPHING

Directions: Solve the following systems of equations by graphing.

Ex. 3: y = -x + 3 $y = \frac{3}{2}x - 2$ Solution: (2,1) Ex. 4: y = 5x - 2 +5x + y = 10 +5x + 5x y = 5x + 10Parallel lines No Solution Ex. 5: y = 3x + 1 -6x + 2y = 2 $+6\chi + 6\chi$ $\frac{2y}{2} = \frac{6\chi + 2}{2}$ **B** y = 3X+1 Same line, Infinitely mony solutions

- Page 2 of 4 -

Directions: Solve the following system of equations by graphing.

Summarize the results from the above graphs:

- 1. A system of linear equations with two lines that have <u>different slopes</u> will have one point of intersection and <u>exactly one solution</u>.
- 2. A system of linear equations with two lines that have the <u>same slope and the same y-intercept</u> are coinciding lines and has <u>infinitely many solutions</u>.
- 3. A system of linear equations with two lines that have the <u>same slope but different y-</u> <u>intercepts</u> are parallel lines that do not intersect and has <u>no solution</u>.

GRAPHING SYSTEMS OF INEQUALITIES

Directions: Graph the following inequality.

Ex. 7: $y \ge 2x + 4$ dashed, Shade above

Directions: Solve each system of inequalities by graphing.

Ex. 8:
(x)
$$x - 2y < 6$$

(y) $y \le -\frac{3}{2}x + 5$ solid, shade below
(x) $x - 2y < 6$
 $-\frac{x}{-2} - \frac{-x}{-2}$
(x) $y > \frac{1}{2}x - 3$ dashed, shade above

Note: Where the separate solutions sets for each line overlap will be the solution set for the whole system

Ex. 9:	<i>x</i> > 1	dashed	verti	cal I	line
	$y \le -2x + 4$	solid,	shade	belo	W

